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Abstract

A model is presented to simulate the behaviour of an axisymmetric volatile liquid droplet impacting on a hot solid
surface in the film boiling region. A volume of fluid (VOF) algorithm is used to model the gross deformation of the
droplet. This algorithm is coupled to a separate one-dimensional algorithm used to model fluid flow within the viscous
vapour layer existing between the droplet and solid surface. Heat transfer within the solid, liquid and vapour phases is
solved, and a kinetic theory treatment is used to calculate conditions existing at the non-equilibrium interfaces of the
vapour layer. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

While the interaction between liquid sprays and hot
solid objects occurs in a wide variety of industrial, do-
mestic and environmental applications, our under-
standing of the mechanisms involved in the process are
far from complete. Indeed, current methods of estimat-
ing the heat transfer and fluid dynamics of sprays im-
pacting hot surfaces are largely empirically derived. Of
fundamental importance to such processes is the hy-
drodynamic and thermodynamic behaviour of individ-
ual droplets which impact a solid surface.

As a droplet nears a hot solid surface, heat is trans-
ferred from the solid to the liquid phase by the processes
of conduction, convection and radiation. This energy
can be used to increase the temperature of the liquid, or
alternatively to vaporise liquid from the base of the
droplet. If the heat transfer rate is large enough during
an impact, liquid vaporised from the base of the droplet
can form a ‘cushion’ of vapour between the solid and
liquid phases, which may be capable of repelling the
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droplet from the solid surface. If during such an impact
no direct contact between the liquid and solid phases
occurs, the impact is said to be a film boiling impact.
The simulation of these impacts is the subject of this
study.

The temperature of a droplet prior to impacting with
a solid surface may be equal to the saturation tem-
perature corresponding to atmospheric pressure, or a
temperature less than the saturation temperature. Im-
pacts of these types are known as saturated and sub-
cooled impacts, respectively. The model presented in this
work is applicable to both types of droplet impact.

Past studies on film boiling droplet impacts have
largely been empirically based, with the notable excep-
tions of studies by Buyevich et al. [1,2] and Inada and
Yang [3]. The Buyevich et al. studies presented a film
boiling impact model which assumed the droplet to be in
the form of a constant volume but variable radius cyl-
inder. Heat transfer within the vapour layer was mod-
elled, while heat transfer within the liquid and solid
phases was neglected. The droplet was assumed to be
at the saturation temperature corresponding to at-
mospheric pressure at all times during the impact.

A comparison of a droplet impact simulated by the
Buyevich et al. model against a documented exper-
imental droplet impact has shown that the model does
not reproduce either the dynamics or heat transfer
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Nomenclature

Cp specific heat at constant pressure (J/kg K)
F volume of fluid (VOF) function
Gr Grashof number
H enthalpy (J/kg)
J mass flux (kg/s)
k thermal conductivity (W/m K)
Kn Knudsen number
M molecular mass (kg/kmol)
Ma Marangoni number
P pressure (Pa)
energy flux (W/m?)
r radial displacement (m)
R universal gas constant (J/kmol K)
Re Reynolds number
S vapour mixture volume flowrate (m3/s)
t time (s)
T temperature (K)
u horizontal or radial velocity (m/s)
v axial or vertical velocity (m/s)

W droplet underside vaporisation velocity (m/s)
y vapour volume fraction

z axial displacement (m)

Greek symbols

o thermal diffusivity (m?/s)

y ratio of specific heats

0 vapour layer height (m)

A mean free path (m)

u absolute viscosity (N s/m?)

v kinematic viscosity (m?/s)

p density (kg/m?)

oy thermal accommodation coefficient
Oy specular reflection coefficient
Subscripts

a air

i initial

1 liquid

m vapour mixture

] solid

v vapour

characteristics of actual impacts [4]. It was demonstrated
by Harvie that the Buyevich et al. model is unsuccessful
because the cylindrical droplet form assumed is not able
to reproduce the continuous deformation of an actual
droplet as it approaches a solid surface. As the Inada
and Yang model also assumes that the droplet form is
cylindrical, and uses similar thermal assumptions to the
Buyevich et al. model, similar conclusions regarding the
validity of the Inada and Yang model can be drawn [4].

Fujimoto and Hatta [5] have simulated the basic
hydrodynamics of transition boiling droplet impinge-
ment using a single phase two-dimensional MAC-type
solution method. In their study, the droplet was as-
sumed to contact the solid surface during the expansion
phase of the impact, but in the later half of the impact
when the droplet began to recollect, they assumed that a
vapour layer formed beneath the droplet. Computa-
tionally, these assumptions were implemented using first
a no-slip boundary condition at the lower surface of the
droplet, followed by a slip boundary condition. Several
impacts of water droplets whose initial diameter was less
than 0.5 mm were simulated, and the hydrodynamic
comparison against previously performed experimental
impacts [6] was reasonable.

Other droplet impact models include the semi-
empirical transition impact boiling models of Bolle and
Moureau [7] and Toda [8], and the analytical nucleate
boiling model of Savic [9]. Droplet impact and spreading
under isothermal conditions has been simulated pre-
viously by Harlow and Shannon [10], Hatta et al. [11]
and Rieber and Frohn [12], amongst others. The simu-
lation of droplet impact and subsequent solidification

has been studied by numerous researchers — further de-
tails can be found in [13].

A greater number of analytical droplet studies have
been concerned with the Leidenfrost phenomenon, or
steady-state droplet film boiling. Such studies include
those by Gottfried et al. [14], Wachters et al. [15], Sen
and Law [16], Nguyen and Avedisian [17] and Zhang
and Gogos [18]. These studies generally assume a geo-
metrical form for the evaporating droplet, and in a
similar fashion to the model presented here, determine
the pressures existing within the vapour layer by solving
the Navier—Stokes equations. These studies have been
successful in predicting droplet heat transfer rates and
droplet evaporation times, especially for small diameter
droplets where the droplet form is stable and nearly
spherical.

This paper forms the first of two papers on the sub-
ject of film boiling droplet impacts. In this paper, the
theory and assumptions used in the development of an
impact model are presented. In Part II, simulations of
droplet impacts are compared against real droplet im-
pacts, to validate the impact model, and also to examine
aspects of this film boiling process [19].

The droplet impact model presented in this work is
composed of two main parts. To model the gross
movement of the liquid droplet, a volume of fluid (VOF)
fluid dynamics model has been developed. To model the
behaviour of the vapour between the liquid and solid
phases, and to model the heat transfer occurring within
the solid, liquid and vapour phases, a separate fluid
dynamics model has been developed, termed the vapour
layer model. The computational coding used to execute
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these two models is called ‘BOUNCE”’. In this study we
will detail firstly the VOF algorithm, followed by the
vapour layer algorithm.

2. The volume of fluid droplet code

The BOUNCE VOF code is based on the well-doc-
umented SOLA-VOF code of Nichols et al. [20], how-
ever the algorithm has been extensively modified to
reflect advances that have been made in computational
free surface flows over the past two decades.

The BOUNCE VOF code solves the full incom-
pressible Navier—Stokes equations on an orthogonal
cylindrical two-dimensional mesh. Momentum advec-
tion and viscous stress terms are treated implicitly, using
an iterative solution procedure [4], and the momentum
advection terms are evaluated using a linear combina-
tion of upwind and central differencing [20]. The conti-
nuity and momentum equations are combined to form
the so-called Pressure Poisson Equation, which is solved
throughout the computational domain using an In-
complete Cholesky Conjugate Gradient (ICCG) inver-
sion algorithm [21,22].

The location of the droplet-free surface is calculated
using a volume of fluid (VOF) method [20]. Under this
method, a VOF function is defined which has the value
of one within the droplet, and zero in the surrounding
atmosphere. As the VOF function does not vary in a
continuous fashion between fluid phases, advection of
the function requires a special technique. The technique
chosen for these simulations was that of the Defined
Donating Region VOF advection algorithm [4,23], this
being a volume conservative algorithm ideally suited to
computationally expensive problems which require both
high spatial accuracy and advection stability.

Surface tension is applied using the Continuum
Surface Model (CSF) model of Brackbill et al. [24].
Under this method surface tension surface forces are
replaced by surface tension volume forces, which act in
a small number of computational cells surrounding the
free surface interface transition region. Surface curva-
tures are calculated using the method outlined by Kothe
et al. [21], with a correction included to account for the
position of the actual fluid interface relative to the cell in
which the force is applied [4]. The surface tension co-
efficient is assumed to be constant and equal to the
coefficient evaluated at the initial temperature of the
fluid.

The pressure force resulting from the viscous vapour
layer, which is calculated by the separate vapour layer
code, is applied using an interface region surface force
[4]. The method of application is analogous to the
method used to apply the surface tension force, although
the vapour layer force is applied only to the lower sur-
face of the droplet.

3. Viscous vapour layer code

Flow within the vapour layer is calculated using a
computational code separate to the main droplet dy-
namics VOF code. Specifically, this is because the di-
mensions of the vapour layer are several orders of
magnitude smaller than the dimensions of the droplet,
and as a result, attempting to use the same computa-
tional mesh for both would result in an impractically
expensive computational code. Also, by developing a
new code for the viscous vapour layer, model as-
sumptions specific to the layer can be employed, thus
allowing greater efficiency and flexibility of the code
compared with more standard fluid dynamics algo-
rithms.

3.1. Theory and assumptions

Fig. 1 shows the basic variables used to analyse the
viscous vapour layer. The problem is defined in two-
dimensional cylindrical coordinates, with r representing
the radial direction and z the vertical or axial direction.
The droplet is separated from the solid surface by a
distance J, which is a function of r. The vapour has
velocity components « and v in the r and z directions,
respectively.

The atmosphere surrounding the droplet is assumed
to contain a mixture of the vapour form of the droplet
liquid, and air, with the initial proportions chosen so
that the atmosphere is saturated with droplet vapour.
Thus, a droplet held in the assumed atmosphere and
away from any hot solid surface would not change in
volume, and a droplet initially heated to saturation
temperature corresponding to atmospheric pressure
would be surrounded by an atmosphere containing only
droplet vapour.

Fig. 1. The basic variables used in the viscous vapour layer
analysis.
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Both in the analysis and computational solution
procedure, the vapour layer problem is divided into two
sections:

1. Viscous vapour flow. Here a solution for the vapour
volume fractions, fluid velocities and pressures exist-
ing beneath the droplet is found by solving a simpli-
fied form of the Navier-Stokes equations within the
vapour layer. Required for this procedure is a knowl-
edge of the position of the droplet, provided by the
internal droplet dynamics VOF algorithm, and a
knowledge of the droplet vaporisation velocity, w(r).

2. Droplet vaporisation velocity, w(r). The droplet
vaporisation velocity is the velocity at which vapour
is being produced at the lower surface of the droplet.
This velocity is calculated by performing a heat trans-
fer analysis within the solid, vapour mixture and lig-
uid mediums.

In this section we outline the viscous vapour flow
model, followed by the droplet vaporisation velocity
model.

3.1.1. Viscous vapour flow model

3.1.1.1. Momentum conservation. In two-dimensional
cylindrical coordinates, the Navier—Stokes momentum
equations for incompressible Newtonian flow with
gravitational terms neglected reduce to

ou fu ou_ 1P (10 (0
a o e p, or "\ ror "or

u u
Tz*a?) M)

in the radial direction, and in the vertical direction,

o, o 10p_ (12 o) @
ot o 0z p,0z "\ror\ or oz2 )’
(2)

where the subscript m refers to vapour mixture proper-
ties, and the kinematic viscosity, v,,, has been assumed to
be constant.

In obtaining a flow solution to the momentum
equations, we note that the most significant processes, in
terms of repelling the droplet from the solid surface,
occur when the droplet is close to the solid surface.
Under such conditions, we can employ the following
three assumptions:

1. the height of the vapour layer is small compared with
the radius of the droplet or vapour layer;

2. the height of the layer changes slowly in the radial di-
rection; and

3. the height of the layer changes at a velocity lower
than the rate at which the vapour moves.

Using these assumptions we find that the magnitude
of the vertical vapour velocity is much smaller than that
of the radial velocity, and Eq. (2) simplifies to,

_Lter 3)
O 0z
Thus, the pressure is uniform across the height of the
vapour layer. Also, in the radial direction we find that
the magnitudes of the temporal, advection and radial
viscous terms are all small, and the radial momentum
Eq. (1) reduces to the viscous flow equation,
2
) = G0 @
An order of magnitude analysis that was performed on
Egs. (1) and (2) during an actual droplet simulation
confirmed the validity of Egs. (3) and (4) [4].

To integrate Eq. (4) we require boundary conditions
for the vapour velocity at the upper and lower surfaces
of the viscous layer. In this study, the Knudsen number
(Kn) is defined as the ratio of the average mean free path
of the vapour mixture to the height of the vapour layer.
As is shown in [19], this number can approach values of
the order of 0.1 during droplet impact simulations. At
these levels, the continuum assumption for the gas is
justified at several mean free paths away from any ad-
joining medium, but a kinetic theory slip treatment must
be used to model gas behaviour in regions close to any
vapour interface [25,4].

A full kinetic momentum analysis of molecule be-
haviour at vapour interfaces is presented in [4]. The
conclusion of this analysis is that an effective slip
velocity can be used to model interaction between the
vapour and each adjacent medium, and that the mag-
nitude of this slip velocity, us, is given by

|, (2-0,\du
w5 )E
where 1 is the average mean free path of the vapour
mixture in the vicinity of the interface and o, is the
Specular Reflection Coefficient for the combination of
vapour mixture and interface material [25].

Applying Eq. (5) to both upper and lower interfaces

of the vapour layer gives the slip velocities at the solid—
vapour and liquid-vapour interfaces as

; (5)

u(r,0) = GSZ—Z(r, 0)
and  u(r,8) —w(r) = —912—:(& 0), (6)

respectively, where u is defined as the radial velocity of
the lower surface of the droplet as calculated by the
VOF algorithm, and the variables

2— v,s 2— vl 4
0,=""2%; and 0, =""TY,, (7)

Oys Oyl

have been defined. Note that the subscripts | and s in
these equations indicate that properties are evaluated in
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the vicinity of the liquid-vapour and solid—vapour in-
terfaces, respectively. The viscous flow Eq. (4) can now
be integrated twice in the vertical direction to yield

u(r,z) = 1 dP(r)Z;—o—( z 4 0, )

,, dr 5+ 0, + 6
o dP 0

By averaging the vapour velocity across the height of
the vapour layer, and by defining S(») to be the volume
flow rate of vapour mixture within the layer, Eq. (8) can
be manipulated to yield

_ 1dP [8° (6+3)(0.+2)
S(r) = 2nr5{Ea(”) {g_ 5m}
(0:+3)
+mul(r)}v ®)

which is the final form of the momentum equation used
in the vapour layer flow solution.

Note that if we assume that the mean free path of the
vapour mixture is large compared with the height of the
vapour layer and apply a no slip velocity boundary
condition, assume that the vapour layer contains only
droplet vapour, and further assume that the velocity of
the fluid on the underside of the droplet is zero, then Eq.
(9) can be manipulated to give the average vapour layer
velocity within the vapour layer as

5 opr

u(r) = “Tonor

(r). (10)
This equation was used by Gottfried et al. [14] in their
work on quasi-steady droplet evaporation, and Buye-
vich and Mankevich [2] in their work on droplet im-
pacts.

3.1.1.2. Total vapour conservation. Continuity require-
ments within the vapour layer are solved by considering
conservation of fluid volume on a cylinder of radius #/,
contained within the layer. Noting that the height of the
vapour layer is not constant, and that vapour is pro-
duced at the lower surface of the droplet, the analysis
yields the integral continuity equation [4],

S(r)=2n /0/ (W(r) —%f(r))rdr. (11)

The differential term contained within the integral of
Eq. (11) is responsible for calculating vapour volume
flow rates resulting from changes in the vapour layer
height. This term was not included in the analysis of
Buyevich et al. [1], despite the studied problem being
fully transient. The term can significantly affect droplet
dynamics by increasing vapour layer pressures as the
droplet nears the solid surface, and decreasing vapour
layer pressures as the droplet moves away.

3.1.1.3. Vapour mixture solution. For the purposes of
determining the proportions of droplet vapour and air
within the vapour layer, the total vapour pressure be-
neath the droplet is specified by the ideal gas assumption

P=P, +P, (12)

where P, is the partial droplet vapour pressure, and P, is
the partial air pressure.

BOUNCE uses an incompressible gas assumption
when solving the Navier-Stokes equations, but an ideal
gas assumption when determining the vapour layer
constitution. Incompressible flow within the vapour
layer has been assumed when solving the momentum
equations because total gauge pressures generated
within the vapour layer are small compared with at-
mospheric pressure, so variations in constituent vapour
densities within the layer are only small.

Utilising Eq. (12), and assuming that the gases are
well mixed across the small height of the vapour layer,
the volume fractions of air and droplet vapour within
the layer can be expressed as, respectively,

) = and ) == Tn (13
The vapour layer density is given by,
Pu(r) = ya(r)pa + (1 = 3a(r)py, (14)

where the air density, p,, and droplet vapour density, p,,
are determined at atmospheric pressure and at the av-
erage vapour layer temperature of

7;/ _ Ts: + Ts;l(Patmos) ) (15)

The vapour layer thermal conductivity, %,,, and vapour
layer dynamic viscosity, u, are defined similarly.

To determine the volume fraction of air within the
vapour layer, a conservation analysis similar to that
presented in the previous section is used, yielding the
integral transport equation [4],

— i r d AV
1) = [ (545002 a1

The initial air volume fraction is determined by as-
suming that the atmosphere surrounding the droplet is
saturated and at the initial temperature of the droplet.

To determine the pressures generated within the
vapour layer, Egs. (9), (11) and (16) are solved simul-
taneously using an iterative solution method. Note
that when integrating equation (9), the pressure at the
extremity of the vapour layer is assumed to be at-
mospheric.

3.1.2. Droplet vaporisation velocity model
The droplet vaporisation velocity, w, is defined as
the velocity at which vapour is produced at the lower
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surface of the droplet. In order to calculate this velocity,
heat transfer rates within the solid, vapour mixture and
liquid phases must be calculated.

Fig. 2 shows temperature variables defined for the
vaporisation velocity calculation. Note that tempera-
tures are dependent on r as well as z — this figure illus-
trates temperatures at only one radial location. The
temperatures of the solid and liquid phases are repre-
sented by 7;(r,z) and Tj(r, z), respectively, and the initial
temperatures of the solid and liquid phases are 7;; and
Ti;, respectively. The temperature of the solid at the
solid-vapour interface is T(r), and the temperature of
the vapour at the solid—vapour interface is 7y, (r). Simi-
larly, the temperature of the liquid at the liquid—-vapour
interface is Tj(r), and the temperature of the vapour at
the liquid-vapour interface is 7j, (7).

Also shown in Figure 2 are heat transfer rates exist-
ing at both the liquid—vapour and solid—vapour inter-
faces. The heat transfer rate out of the solid is ¢s, the
heat transfer rate into the bulk of the liquid is ¢, and the
heat transfer rate across the vapour region is ¢,. These
heat transfer rates are all functions of r.

3.1.2.1. Solid phase heat transfer. In two-dimensional
cylindrical coordinates, the heat diffusion equation de-
scribing conduction within the solid is [26],

or [l o/ or T |
'a—%bafﬁy)+aﬂ’ 17
where a constant thermal conductivity, k;, for the solid
has been assumed. The thermal diffusivity for the solid is
o = ks/csp, Where ¢ is the specific heat and p, is the
density of the solid.

During hot surface droplet impacts, solid tempera-
ture variations in the radial direction are typically small
compared with variations in the axial direction. To il-
lustrate this point, for solids which are examined in this
study, the thermal diffusivity is typically of the order
1 x 107 m?/s. For a droplet with a diameter of around

solid vapour mixture liquid

Fig. 2. Liquid, vapour mixture and solid temperatures at radius
r used in the calculation of the vaporisation velocity, w.

2 mm, simulations indicate that the droplet is in resi-
dence with the surface for a time period of the order of 5
ms. Thus the thermal diffusion length, conservatively
defined as v/ut, is of the order of 0.2 mm. This length is
considerably less than the diameter of the droplet.
Consequently, heat transfer within the solid is domi-
nated by conduction in the axial rather than in the radial
direction, and the heat diffusion Eq. (17) can be sim-
plified to give,

0T, 0T,
E = O 2 (18)

In order to integrate Eq. (18) to find the temperature
distribution within the solid, boundary conditions are
required to describe conditions at the solid—vapour in-
terface, and within the body of the solid.

At the solid—vapour interface, the rate of heat loss to
the vapour phase is given by Fourier’s Law as

oT,

s - - s_S s V). 1
4.(r) =~k 2 (,0) (19)
For the internal solid boundary condition, we assume
that the solid has a thickness which is large compared
with the thermal diffusion length, so that

Ts(r7 - OO) = Ts,i- (20)

Eq. (18), combined with (Egs. 19) and (20), and a
knowledge of the heat loss rate from the solid, gs(r),
provide a solution for the temperature distribution
within the solid phase.

3.1.2.2. Vapour phase heat transfer. In two-dimensional
cylindrical coordinates, the equation for conservation of
thermal energy in an incompressible fluid, assuming
constant thermal conductivity, is given as [27],

or | o7 OT _ Kk [10(or\ oT

" oz cpp ¥ Or "or 022
2
u Ou u\2
+20pp {(ar) +(r)

ot or
ov\® 1 /v ou\’
+ <62> N (6r+62) } 1)

Eq. (21) can be greatly simplified to represent heat

transfer within the vapour layer, by examining the

magnitude of each of the constituent terms:

1. Using the assumptions that were made in Section
3.1.1 regarding the geometry of the vapour layer,
we conclude that all terms in Eq. (21) which represent
changes in the radial direction are small compared
with terms representing changes in the axial direction,
as the height of the vapour layer is considerably
smaller than the radius of the vapour layer.

2. Comparing the convection and conduction terms in
Eq. (21), the non-dimensional ratio vd/a, is small,
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and thus, the axial convective term in Eq. (21) can be
neglected.

3. Similarly, comparing the conductive and viscous gen-
eration terms in Eq. (21), we note that the thermal
conductivity, k, for gases of interest in this study is
several orders of magnitude larger than the absolute
viscosity, u, for these same gases. Thus, the non-di-
mensional ratio 2uu?/kT is small, and consequently,
the viscous dissipation terms in Eq. (21) may be
neglected.

4. Finally, droplet and solid surface temperature varia-
tions in time are small compared with temperature
variations across the vapour layer in the axial direc-
tion, and consequently, the temporal term in
Eq. (21) can be neglected.

Utilising these assumptions, Eq. (21) reduces to the
one-dimensional steady-state conduction equation,

0T,
o2

(22)

Integrating twice in the axial direction, using the solid
surface and liquid surface temperatures as boundary
conditions gives the temperature distribution within the
vapour layer as

z
TV:Tsv+5

(T — Tw)- (23)
As a linear temperature distribution has been obtained,
the heat transfer rate across the layer is constant, and
given by

0.) =" (1, - 7). (24)

Note that heat transfer by radiation across the vapour
layer has been neglected in this study. The maximum
possible radiative heat loss rate by the solid surface is
given by the heat loss rate from a black body at the
temperature of the surface [26]. Comparing this maxi-
mum radiative heat rate to the conductive heat transfer
rate across the vapour layer, we find that radiative heat
transfer can be neglected below an initial solid surface
temperature of approximately 700°C. Thus, this tem-
perature defines the upper solid temperature limit for the
model.

3.1.2.3. Liquid phase heat transfer. Heat transfer within
the liquid phase is described by the following thermal
energy transport equation for incompressible fluids
represented using a VOF function in two-dimensional
cylindrical coordinates [4],

P T T (18 (3
7 or or

ot or 0z
0 0T
G| S

where F is the local VOF fraction. Note that for liquids
commonly involved in hot surface droplet impacts,
thermal energy generation by viscous dissipation is
negligible, as the dimensionless parameter 2uu?/kT is
small.

As in the solid conduction analysis of Section
3.1.2.1, we evaluate the characteristic thermal diffusion
time, +/af, for a typical droplet liquid. The thermal
diffusivity of liquids used in droplet impacts is typically
of the order 2 x 1077 m?/s. For an approximate impact
time of 5 ms for a 2 mm diameter droplet, this gives a
thermal diffusion length of the order of 0.03 mm. As
this diffusion length is considerably smaller than the
dimensions of the droplet, we can again assume that
the effect of conduction in the radial direction is neg-
ligible compared with conduction in the axial direction,
and the radial conduction term in Eq. (25) can be
neglected.

Eq. (25) provides a solution to the temperature dis-
tribution within the droplet in terms of absolute coor-
dinates — coordinates that are relative to the solid
surface. For the computational solution, it is more
convenient to work with a combination of absolute co-
ordinates, and coordinates which are relative to the
lower surface of the droplet.

Defining a relative coordinate system using dashed
variables,

J

!=tr=r and 7 =z-94(r). (26)

Eq. (25) can be transformed to yield [4],

FO L yp D ypd g | p 0 20
+ + A az’2+©z’ oz

0% 0% oT T, OF 0T,
| | e

The radial differential operator is not redefined in the
relative coordinate system for reasons of computational
simplicity.

The term 0F /07 in Eq. (27) represents the gradient of
the VOF function, in coordinates relative to the lower
droplet surface. However, as the thermal diffusion length
Vat was shown to be significantly smaller than the di-
mensions of the droplet, the VOF function can be as-
sumed to be axially constant within the droplet volume
in which we wish to calculate the liquid heat transfer
rates. Thus, we can assume

oF

il 2
=0, (28)
and Eq. (27) simplifies to give

oT o,  ,0T T,

e T e (29)

In order to integrate Eq. (29), boundary conditions for
heat conduction at the liquid-vapour interface and
within the body of the droplet are required. At the
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liquid-vapour interface, Fourier’s law gives the rate of
heat loss into the droplet as

o7
q(r) = —k1§(r7 0). (30)
As in the solid conduction analysis, the diameter of the
droplet is two orders of magnitude larger than the heat
diffusion length within the droplet, so that

Ti(r,00) = T;. (31)

An adiabatic boundary condition is used at the radial
extremities of the droplet.

Two forms of heat convection within the droplet
have been neglected in this study; natural convection
and Marangoni convection. Natural convection is con-
vection driven by buoyant forces within the fluid. The
effects of natural convection may be neglected in a heat
transfer analysis when the inequality

Gr
Re? <1 (32)
holds [26], where Re is the Reynolds number, and Gr the
Grashof number. Using typical values for droplet types
examined in this study, we find that the above ratio is of
the order of 0.001, and we are justified in neglecting the
effects of natural convection.

Marangoni convection is convection driven by
changes in the magnitude of surface tension along a fluid
interface. These changes may be caused by changes in
the liquid temperature along a fluid interface, as the
magnitude of surface tension is dependent on the tem-
perature of a fluid. The magnitude of the force which
drives such a convection is given by [28]

pr = vo—7 (33)

where pr is the resulting pressure directed tangentially
along the interface, and o the surface tension coeffi-
cient of the liquid. Substituting in typical values for
water droplets examined in this study we find that the
magnitude of pr is of the order of 10 Pa. This pressure
is small compared with gauge pressures generated
within the vapour layer [4], so given the short timescale
over which these droplet impacts occur, it does not
appear that Marangoni convection is significant in this
study.

We now turn our attention to both vapour layer in-
terfaces, where an energy balance and an examination of
the conditions existing at those boundaries are made.

3.1.2.4. Solid-vapour interface. Energy balance. An en-
ergy balance at the solid—vapour interface reveals

qs(r) = ¢v(r)- (34)

Substituting Eq. (19) for the heat loss rate from the
solid, and Eq. (24) for the energy transfer rate across the
vapour layer, yields

0T, ko
kS?(V:O) =—(Tw(r) -
z

5 T (1)) (35)

Interface conditions. As the Knudsen number within
the vapour layer can reach values of the order of 0.1
during droplet impact simulations, the vapour flow
within the viscous layer is in the slip regime, and a
molecular treatment is required to describe the change in
fluid velocities occurring across both the solid—vapour
and liquid—vapour interfaces. In an analogous manner,
the molecular slip flow regime existing within the vapour
layer dictates that a molecular temperature discontinuity
treatment is required to describe the variation in fluid
temperature across the solid—vapour and liquid—vapour
interfaces [4,25].

Following the analysis presented in Harvie [4], the
relationship between temperatures existing on either side
of the solid-liquid interface can be represented by

n -1 =42 ) (1) Lo

where o is the Thermal Accommodation Coeflicient
for the combination of vapour and solid surface. Noting
that the temperature profile within the vapour is linear,
as given by Eq. (23), Eq. (36) becomes

A N e [ =) [CXCR )
’A (37)

and the conditions at the solid—vapour interface are
specified.

(36)

3.1.2.5. Liquid-vapour interface. Energy balance. In a
similar manner to the solid—vapour interface, an energy
balance at the liquid—vapour interface reveals that

av(r) = qi(r) + Wwp Hy. (38)

In this equation, the latent heat of vaporisation is cor-
rected to account for the sensible heat contained within

the vapour layer,
Ts.i - Tsa Pa mos
Hfg.c = Hfg(Tsat (Palmos)) + Cpy (%) . (39)

Substituting Eqs. (24) and (30) into Eq. (38) gives the

energy balance at the interface as

ki o7 .

S (L) = o) = kg (m.0) +ibp e (40)
Mass balance. In addition to the equations specified

for the solid—vapour interface, at the liquid—vapour in-

terface a mass balance equation is required. A molecular

evaluation of evaporation and condensation rates ex-

isting at the liquid—vapour boundary yields the total

vaporisation velocity at the interface as [4],
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W:& M, <Psat(Tll(r))_ P(V) > (41)
py V2R /Tu(r)  /Ti(r)

Here gy, is the Thermal Accommodation Coefficient for
the combination of liquid and vapour mixtures, M, is the
molecular weight of the droplet vapour, R the universal
gas constant and P the absolute vapour pressure within
the vapour layer.

Interface conditions. The magnitude of the effective
temperature discontinuity at the solid-vapour interface
is given by [4]

no) -1 =5 (272 (2 1) S
(@)

Noting that the temperature profile within the vapour is
linear, as given by Eq. (23), Eq. (42) becomes

w0 - 1) = - 55 (2 ) (2= 1)
% (T(r) — T(r)). @)

The variable ¢ is defined as the ratio of the molecular
evaporation to condensation rates,

d,:‘é:L VI (r) /%\T;R+l. (44)

Jc at,va

The droplet vaporisation velocity can now be found by
the simultaneous solution of Egs. (18), (20), (29), (31),
(35), (37), (40), (41) and (43).

4. Numerical procedure

The droplet impact algorithm has been implemented
using a Fortran code called BOUNCE. The vapour layer
code works within the VOF code — the VOF code feeds
the vapour layer code in the geometry of the droplet,
from which the vapour layer code calculates pressures
existing beneath the droplet. These pressures are then
fed back to the VOF code to determine changes in the
geometry of the droplet. As the variables passed between
the VOF and vapour layer codes are treated implicitly,
an iterative procedure is required to finalise end of
timestep values. Further details of the procedure can be
found in [4].

The film boiling impact problem is a stiff problem,
meaning that it involves physical processes which oper-
ate on radically different timescales. A result of this
stiffness is that droplet simulations require small time-
steps, and consequently the BOUNCE code is quite
computationally expensive. Typically the simulation of a
complete droplet impact requires of the order of 10,000
timesteps, which corresponds to several hours of com-
putation on a 200 MHz Pentium PC.

5. Conclusions

A new droplet impact model that is capable of
modelling the impact of non-saturated droplets on hot
surfaces in the film boiling regime has been presented.
The model uses a VOF algorithm to simulate the gross
droplet deformation, and a separate one-dimensional
fluid algorithm to simulate vapour flow within the vis-
cous vapour layer. Heat transfer within the solid, liquid
and vapour phases is solved, and a molecular interface
treatment is used to describe the non-equilibrium con-
ditions existing at the vapour region boundaries. Vali-
dation of the model is accomplished in a companion
paper [19], where simulated droplet impacts are com-
pared with documented actual droplet impacts.
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